Fraunhofer Researchers Develop Natural Rubber from Dandelion
Approximately 40,000 products of everyday life contain natural rubber. It’s the material that provides extreme elasticity, tensile strength and low-temperature flexibility in products from mattresses and gloves to adhesive tape and tires. As yet, it has no artificial replacement. However, researchers from the Fraunhofer Institute for Molecular Biology and Applied Ecology IME were able to identify a cost-effective and eco-friendly alternative to the natural rubber tree: the dandelion.Currently, all our natural rubber comes from Hevea brasiliensis, a tree that grows under subtropical climate. Increasing demands and potential problems with a devastating fungus have made natural rubber into a valuable resource. Southeast Asia accounts for 95% of global production. In order to meet growing demands, producers turn rainforest into agricultural land. Now Professor Dirk Prüfer and his colleague Dr. Christian Schulze Gronover from Fraunhofer IME in Münster are developing Taraxacum koksaghyz, also known as Russian dandelion, as an effi cient replacement for the natural rubber tree. “The plant is extremely resilient, able to grow in moderate climates and even in soil that is not or just barely suited for the cultivation of food and feed crops,” explains Christian Schulze Gronover. “Dandelions also have the advantage of growing annually. The natural rubber tree takes between seven and ten years to deliver the first harvest.”Dirk Prüfer decided to investigate the dandelion after a sudden insight on a day out. “I was sitting in a meadow in the Sauerland region in Germany, and it was absolutely covered with dandelions. Having plucked the flower off one of them, I was wondering if the expelling white latex contains rubber.” However, Germany’s native dandelions don’t produce sufficient quantities of rubber for being industrially viable. That’s why the researchers subsequently turned their attention to the Russian dandelion, which produces large amounts of natural rubber.No genetic modification
相關閱讀
本站所有信息與內容,版權歸原作者所有。網站中部分新聞、文章來源于網絡或會員供稿,如讀者對作品版權有疑議,請及時與我們聯系,電話:025-85303363 QQ:2402955403。文章僅代表作者本人的觀點,與本網站立場無關。轉載本站的內容,請務必注明"來源:林中祥膠粘劑技術信息網(www.423344.com)".
網友評論